

Exercices sur le raisonnement par récurrence

Exercice 1G.1:

On considère les suites (u_n) et (v_n) définies par :

$$u_0 = 1$$
 , $v_0 = 0$

et pour tout entier naturel n:

$$u_{n+1} = 3u_n + 4v_n$$
 et $v_{n+1} = 2u_n + 3v_n$.

On cherche le premier rang à partir duquel u_n et v_n soient tous les deux supérieurs à 1000.

Écrire un algorithme qui affiche le premier couple $(u_n; v_n)$ qui vérifie cette condition, en utilisant une boucle **Tant Que**.

Exercice 1G.2:

- 1. Soit la suite (u_n) définie par $u_0 = 3$ et pour tout entier naturel n par $u_{n+1} = 2u_n + 5$. A l'aide d'un tableur, on obtient les valeurs des premiers termes de la suite (u_n) . Quelle formule, étirée vers le bas, peut-on écrire dans la cellule A3 pour obtenir les termes successifs de la suite (u_n) ?
- $\begin{array}{c|cccc} & A & \\ 1 & u_n & \\ 2 & 3 & \\ 3 & 11 & \\ 4 & 27 & \\ 5 & 59 & \\ \end{array}$
- 2. Soit la suite (v_n) définie par $v_0 = 3$ et pour tout entier naturel n par $v_{n+1} = 2nv_n + 5$. A l'aide d'un tableur, déterminer les premiers termes de la suite (v_n) .

Exercice 1G.3: piège classique en programmation

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = \left(\frac{n+1}{2n+4}\right)u_n$.

On admet que la limite de la suite (u_n) vaut 0.

Compléter l'algorithme ci-dessous, afin qu'il affiche la plus petite valeur de n pour laquelle $u_n \le 10^{-5}$.

$$n \leftarrow 0$$
 $U \leftarrow 1$
Tant que ...
 $n \leftarrow ...$
 $U \leftarrow ...$
Fin Tant que
Afficher n

Réaliser alors un programme python déterminant la valeur du rang cherché.

CORRIGE - Notre Dame de La Merci - Montpellier - M. Quet

Exercice 1G.1:

On considère les suites (u_n) et (v_n) définies par : $u_0 = 1$, $v_0 = 0$, et pour tout entier naturel n :

$$u_{n+1} = 3u_n + 4v_n$$
 et $v_{n+1} = 2u_n + 3v_n$.

On cherche le premier rang à partir duquel u_n et v_n soient tous les deux supérieurs à 1000.

Écrire un algorithme puis un programme python qui affiche le premier couple $(u_n; v_n)$ qui vérifie cette condition, en utilisant une boucle **Tant Que**.

$$\begin{array}{l} U=1 \\ V=0 \\ rang=0 \\ while \ U\!<\!=1000 \ or \ V <\!=1000; \\ U\ ,\ V=3^*U+4^*V\ ,\ 2^*U+3^*V \\ rang+=1 \\ print("Au\ rang\ "\ ,\ rang\ ,\ "\ ,\ on\ obtient\ le\ couple\ ("\ ,\ U\ ,\ ";"\ ,\ V\ ,\ ")") \end{array}$$

 \rightarrow Au rang 5, on obtient le couple (3363;2378)

Exercice 1G.2:

1. Soit la suite (u_n) définie par $u_0 = 3$ et pour tout entier naturel n par $u_{n+1} = 2u_n + 5$. A l'aide d'un tableur, on obtient les valeurs des premiers termes de la suite (u_n) . Quelle formule, étirée vers le bas, peut-on écrire dans la cellule A3 pour obtenir les termes successifs de la suite (u_n) ?

	Α
1	u_n
2	3
3	11
4	27
5	59

=2*A2+5

2. Soit la suite (v_n) définie par $v_0 = 3$ et pour tout entier naturel n par $v_{n+1} = 2nv_n + 5$.

A l'aide d'un tableur, déterminer les premiers termes de la suite (v_n) .

Dans la case A3 : = A2+1Dans la case B3 : = 2*A2*B2+5

	A	В
1	n	v_n
2	0	3
3	1	15
4	2	65
5	3	395

Exercice 1G.3: piège classique en programmation

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = \left(\frac{n+1}{2n+4}\right)u_n$.

On admet que la limite de la suite (u_n) vaut 0.

Compléter l'algorithme ci-dessous, afin qu'il affiche la plus petite valeur de n pour laquelle $u_n \le 10^{-5}$. Réaliser alors un programme python déterminant la valeur du rang cherché.

L'erreur classique est liée à la place de la ligne 4 incrémentant le rang n: le programme aurait été plus simple si cette ligne avait été placée après le calcul de U.

On le visualise mieux sur le tableur suivant :

	A	В
1	n	u_n
2	0	1
3	1	$\frac{1}{4}$
4	2	$\frac{1}{12}$
5	3	$\frac{1}{32}$

Dans la case A3 : =(A2+1)/(2*A2+4)*B2

Dans l'algorithme, il ne faut donc pas injecter = (n+1)/(2n+4)*U à la ligne 5, mais :

$$=((n-1)+1)/(2(n-1)+4)*U$$

Soit:

$$= n/(2n+2)*U.$$

On obtient l'algorithme suivant :

$$n \leftarrow 0$$
 $U \leftarrow 1$
Tant que U > 0,00001
 $n \leftarrow n+1$
 $U \leftarrow = n/(2n+2)*U$
Fin Tant que
Afficher n

On obtient le programme suivant :

```
U=1\\ n=0\\ while U>0.00001 : n+=1\\ U=n/(2*n+2)*U\\ print("Au \ rang"\ ,\ n\ ,"la\ suite\ u\ devient\ inférieure\ à 0,00001"\ )
```

→ Au rang 13 la suite u devient inférieure à 0,00001

Le programme suivant est plus simple :

```
U=1\\ n=0\\ while U>0.00001 : U=(n+1)/(2*n+4)*U\\ n+=1\\ print("Au \ rang"\ ,\ n\ ,\ "la\ suite\ u\ devient\ inférieure\ à 0,00001"\ )
```