

Terminale Spécialité Math

Notre Dame de La Merci

**20 septembre 2022** 

### Interrogation sur le raisonnement par récurrence (30 minutes)

# Exercice 1:

Démontrer, en utilisant la propriété de récurrence, que pour tout entier naturel  $n \ge 1$ :

$$2+4+6+...+2n=n^2+n$$
.

## Exercice 2:

Montrer par récurrence que, pour tout entier nature  $n \ge 1$ :

$$6^n + (-1)^{n+1}$$
 est un multiple de 7.

### Exercice 3:

On considère la suite  $(u_n)$  définie sur  $\mathbb{N}$  par :  $u_0 = \frac{1}{2}$  et, pour tout entier naturel n :

$$u_{n+1} = \frac{3u_n}{1+2u_n} \,.$$

Montrer par récurrence que pour tout entier naturel n,  $0 < u_n < 1$ .

## Exercice 4:

On considère la suite  $(u_n)$  définie sur  $\mathbb{N}$  par :  $u_0 = 0$  et, pour tout entier naturel n :

$$u_{n+1} = 3u_n - 2n + 3$$
.

- 1. Calculer  $u_1$ ,  $u_2$  et  $u_3$ .
- 2. Démontrer que pour tout entier naturel n,  $u_n = 3^n + n 1$ .

Notre Dame de La Merci

**20 septembre 2022** 

Interrogation sur le raisonnement par récurrence - CORRIGE - M. Quet

#### Exercice 1:

Démontrer, en utilisant la propriété de récurrence, que pour tout entier naturel  $n \ge 1$ :

$$2+4+6+...+2n=n^2+n$$
.

**Initialisation**: si n=1:  $1^2+1=2=2\times 1$ : l'initialisation est vérifiée.

**Hérédité**: supposons qu'il existe un rang n tel que :  $2 \times 1 + 2 \times 2 + 2 \times 3 + ... + 2 \times n = n^2 + n$ .

⇒cela implique-t-il: 
$$2 \times 1 + 2 \times 2 + 2 \times 3 + ... + 2 \times (n+1) = (n+1)^2 + (n+1) = n^2 + 3n + 2$$
?

On exprime le rang (n+1):

$$(2+4+6+...+2n)+2(n+1)=(n^2+n)+2(n+1)$$
  $\Rightarrow$  en injectant l'hypothèse  $=n^2+n+2n+2=n^2+3n+2$ 

L'hérédité est vérifiée.

Par récurrence, pour tout entier  $n \ge 1$ :  $2+4+6+...+2n = n^2+n$ .

**Exercice 2:** Montrer par récurrence que, pour tout entier naturel  $n \ge 1$ :

$$6^n + (-1)^{n+1}$$
 est un multiple de 7.

**Initialisation**: si n=1:  $6^1 + (-1)^{1+1} = 6+1=7$ : l'initialisation est vérifiée.

**Hérédité**: supposons qu'il existe un rang n tel que :  $6^n + (-1)^{n+1} = 7 \times k$ ,  $k \in \mathbb{Z}$ .

$$\rightarrow$$
 cela implique-t-il :  $6^{n+1} + (-1)^{(n+1)+1} = 7 \times k'$ ,  $k' \in \mathbb{Z}$ ?

En partant du rang n:

$$6^{n} + (-1)^{n+1} = 7 \times k , k \in \mathbb{Z}$$

$$\Leftrightarrow 6 \times \left[ 6^{n} + (-1)^{n+1} \right] = 6 \times 7 \times k , k \in \mathbb{Z}$$

$$\Leftrightarrow 6^{n+1} + 6 \times (-1)^{n+1} = 6 \times 7 \times k , k \in \mathbb{Z}$$

$$\Leftrightarrow 6^{n+1} + (7-1) \times (-1)^{n+1} = 6 \times 7 \times k , k \in \mathbb{Z}$$

$$\Leftrightarrow 6^{n+1} + 7 \times (-1)^{n+1} - 1 \times (-1)^{n+1} = 6 \times 7 \times k , k \in \mathbb{Z}$$

$$\Leftrightarrow 6^{n+1} + 7 \times (-1)^{n+1} - 1 \times (-1)^{n+1} = 6 \times 7 \times k , k \in \mathbb{Z}$$

$$\Leftrightarrow 6^{n+1} + (-1)^{n+2} = 7 \times 6k - 7 \times (-1)^{n+1} = 7 \times \left[ 6k - (-1)^{n+1} \right], k \in \mathbb{Z}$$

En partant du rang n+1

$$6^{n+1} + (-1)^{n+2} = 6 \times 6^n + (-1) \times (-1)^{n+1} = 6 \times 6^n + (6-7) \times (-1)^{n+1}$$
$$= 6 \times 6^n + 6 \times (-1)^{n+1} - 7 \times (-1)^{n+1} = 6 \times \left[6^n + (-1)^{n+1}\right] - 7 \times (-1)^{n+1}$$

or par hypothèse :  $\left[6^n + \left(-1\right)^{n+1}\right]$  est un multiple de 7 et la somme de deux multiples de 7 est un multiple de 7 : l'hérédité est vérifiée.

Par récurrence, pour tout entier  $n \ge 1$ :  $6^n + (-1)^{n+1}$  est un multiple de 7.

# Exercice 3:

On considère la suite  $(u_n)$  définie sur  $\mathbb{N}$  par :  $u_0 = \frac{1}{2}$  et, pour tout entier naturel n :  $u_{n+1} = \frac{3u_n}{1+2u_n}$ .



Montrer par récurrence que pour tout entier naturel n,  $0 < u_n < 1$ .

La fonction associée est définie par :  $f(x) = \frac{3x}{1+2x}$ , définie sur [0;1].

$$f'(x) = \frac{3(1+2x)-3x\times2}{(1+2x)^2} = \frac{3+6x-6x}{(1+2x)^2} = \frac{3}{(1+2x)^2}$$

La dérivée est strictement positive sur [0;1] donc la fonction f est strictement croissante sur [0;1].

**Initialisation**: si n = 0:  $u_0 = \frac{1}{2}$  donc  $0 < u_0 < 1$ : l'initialisation est vérifiée.

**Hérédité** : supposons qu'il existe un rang n tel que :  $0 < u_n < 1$ .

$$\rightarrow$$
 cela implique-t-il :  $0 < u_{n+1} < 1$  ?

Par hypothèse:

$$0 < u_n < 1$$

La fonction f étant strictement croissante sur [0;1], on obtient :

$$f(0) < f(u_n) < f(1)$$

$$\Leftrightarrow 0 < u_{n+1} < 1$$
 : l'hérédité est vérifiée.

Par récurrence, pour tout entier naturel  $n: 0 < u_n < 1$ .

#### Exercice 4:

On considère la suite  $(u_n)$  définie sur  $\mathbb{N}$  par :  $u_0 = 0$  et, pour tout entier naturel n :

$$u_{n+1} = 3u_n - 2n + 3$$
.

1. Calculer  $u_1$ ,  $u_2$  et  $u_3$ .

$$u_1 = u_{0+1} = 3u_0 - 2 \times 0 + 3 = 3 \times 0 - 2 \times 0 + 3 = 3$$
  
 $u_2 = u_{1+1} = 3u_1 - 2 \times 1 + 3 = 3 \times 3 - 2 \times 1 + 3 = 10$ 

$$u_3 = u_{2+1} = 3u_2 - 2 \times 2 + 3 = 3 \times 10 - 2 \times 2 + 3 = 29$$

**2.** Démontrer que pour tout entier naturel n,  $u_n = 3^n + n - 1$ .

**Initialisation**: si n=0:  $3^0+0-1=1-1=0=u_0$ : l'initialisation est vérifiée.

**Hérédité**: supposons qu'il existe un rang n tel que :  $u_n = 3^n + n - 1$ .

$$\rightarrow$$
 cela implique-t-il:  $u_{n+1} = 3^{n+1} + (n+1) - 1 = 3^{n+1} + n$ ?

Par définition:

$$u_{n+1} = 3u_n - 2n + 3 = 3(3^n + n - 1) - 2n + 3 = 3^{n+1} + 3n - 3 - 2n + 3 = 3^{n+1} + n$$

L'hérédité est vérifiée.

Par récurrence, pour tout entier naturel  $n: u_n = 3^n + n - 1$ .