

Exercices sur les suites arithmético-géométriques

Exercice 5A.1

On considère une suite (U_n) définie sur \mathbb{N} par : $U_0 = 4$ et $U_{n+1} = 2U_n - 3$.

Soit la suite (V_n) définie sur N par : $V_n = U_n - 3$.

- 1) Quelle est la nature de la suite (U_n) .
- 2) Montrer que la suite (V_n) est géométrique.
- 3) Donner l'expression de V_n en fonction de n.
- 4) En déduire l'expression de U_n en fonction de n.
- 5) Calculer la somme des 11 premiers termes de (U_n) .

Exercice 5A.2

On considère une suite (u_n) définie sur \mathbb{N} par : $u_0 = 8$ et $u_{n+1} = 0.95u_n + 0.5$.

Soit la suite (v_n) définie sur \mathbb{N} par : $v_n = u_n - 10$.

- a) Déterminer la nature de la suite (v_n) .
- b) Exprimer les termes de la suite (v_n) en fonction de n.
- c) En déduire l'expression de u_n en fonction de n.
- d) Déterminer la limite des termes de la suite (u_n) lorsque n tend vers $+\infty$.

Exercice 5A.3

On considère une suite (u_n) définie sur \mathbb{N} par : $u_0 = -2$ et $u_{n+1} = 2u_n + 0.5$.

Soit la suite (v_n) définie sur \mathbb{N} par : $v_n = u_n + 0.5$.

- a) Déterminer la nature de la suite (v_n) .
- b) Exprimer les termes de la suite (v_n) en fonction de n.
- c) En déduire l'expression de u_n en fonction de n.
- d) Déterminer la limite des termes de la suite (u_n) lorsque n tend vers $+\infty$.

CORRIGE - Notre Dame de La Merci - Montpellier - M. Quet

Exercice 5A.1

On considère une suite (U_n) définie sur \mathbb{N} par : $U_0 = 4$ et $U_{n+1} = 2U_n - 3$.

Soit la suite (V_n) définie sur N par : $V_n = U_n - 3$.

- 1) Quelle est la nature de la suite (U_n) .
 - (U_n) est une suite arithmético-géométrique.
- 2) Montrer que la suite (V_n) est géométrique.

$$V_{n+1} = U_{n+1} - 3 = 2U_n - 3 - 3 = 2U_n - 6 = 2(U_n - 3) = 2 \times V_n$$

La suite (V_n) est géométrique de raison q=2 et de premier terme $V_0=U_0-3=1$.

3) Donner l'expression de V_n en fonction de n.

$$V_n = V_0 \times q^n = 1 \times 2^n = 2^n$$

4) En déduire l'expression de U_n en fonction de n.

$$V_n = U_n - 3$$
 donc $U_n = V_n + 3 = 2^n + 3$

5) Calculer la somme des 11 premiers termes de (U_n) .

$$\begin{split} U_0 + U_1 + \dots + U_{10} &= \left(V_0 + 3\right) + \left(V_1 + 3\right) + \dots + \left(V_{10} + 3\right) = V_0 + V_1 + \dots + V_{10} + 11 \times 3 \\ &= V_0 \times \frac{1 - q^{nombre\ de\ termes}}{1 - q} + 11 \times 3 \\ &= 1 \times \frac{1 - 2^{11}}{1 - 2} + 33 = \frac{1 - 2^{11}}{-1} + 33 = 2^{11} - 1 + 33 = 2080 \end{split}$$

u=4

n=0

s=4

for i in range(1,11):

$$u=2*u-3$$

n+=1

s+=u

print("La somme cherchée est S(",n,")=",s)

→ La somme cherchée est S(10)=2080

La Merci

Exercice 5A.2

On considère une suite (u_n) définie sur \mathbb{N} par : $u_0 = 8$ et $u_{n+1} = 0.95u_n + 0.5$.

Soit la suite (v_n) définie sur \mathbb{N} par : $v_n = u_n - 10$.

a) Déterminer la nature de la suite (v_n) .

$$v_{n+1} = u_{n+1} - 10 = 0,95u_n + 0,5 - 10 = 0,95u_n - 9,5 = 0,95 \left(u_n - \frac{9,5}{0,95}\right) = 0,95 \left(u_n - 10\right) = 0,95v_n - 10 = 0,95u_n - 10$$

Ou:
$$v_{n+1} = u_{n+1} - 10 = 0.95u_n + 0.5 - 10 = 0.95u_n - 9.5 = 0.95(v_n + 10) - 9.5 = 0.95v_n$$

La suite (v_n) est géométrique de raison 0,95.

b) Exprimer les termes de la suite (v_n) en fonction de n.

Son premier terme est:

$$v_0 = u_0 - 10 = 8 - 10 = -2$$
.

L'expression de la suite (v_n) est, pour tout $n \in \mathbb{N}$:

$$v_n = v_0 \times q^n = -2 \times 0,95^n$$

c) En déduire l'expression de u_n en fonction de n.

$$u_n = v_n + 10 = -2 \times 0.95^n + 10$$

d) Déterminer la limite des termes de la suite (u_n) lorsque n tend vers $+\infty$.

$$0 < 0.95 < 1$$
 donc: $\lim_{n \to +\infty} 0.95^n = 0$

Par produit et par somme :

$$\lim_{n\to+\infty}u_n=10$$

Exercice 5A.3

On considère une suite (u_n) définie sur \mathbb{N} par : $u_0 = -2$ et $u_{n+1} = 2u_n + 0.5$.

Soit la suite (v_n) définie sur \mathbb{N} par : $v_n = u_n + 0, 5$.

a) Déterminer la nature de la suite (v_n) .

$$v_{n+1} = u_{n+1} + 0, 5 = 2u_n + 0, 5 + 0, 5 = 2u_n + 1 = 2\left(u_n + \frac{1}{2}\right) = 2v_n$$

Ou:
$$v_{n+1} = u_{n+1} + 0.5 = 2u_n + 0.5 + 0.5 = 2u_n + 1 = 2(v_n - 0.5) + 1 = 2v_n$$

La suite (v_n) est géométrique de raison 2.

b) Exprimer les termes de la suite (v_n) en fonction de n.

Son premier terme est:

$$v_0 = u_0 + 0.5 = -2 + 0.5 = -1.5$$
.

L'expression de la suite (v_n) est, pour tout $n \in \mathbb{N}$:

$$v_n = v_0 \times q^n = -1, 5 \times 2^n$$

c) En déduire l'expression de u_n en fonction de n.

$$u_n = v_n - 0.5 = -1.5 \times 2^n - 0.5$$

d) Déterminer la limite des termes de la suite (u_n) lorsque n tend vers $+\infty$.

$$2 > 1$$
 donc: $\lim_{n \to +\infty} 2^n = +\infty$

Par produit et par somme :

$$\lim_{n\to +\infty}u_n=-\infty$$

