Contrôle sur les suites numériques (3 pages, 1h15)

Un bon politicien est celui qui est capable de prédire l'avenir et qui, par la suite, est également capable d'expliquer pourquoi les choses ne se sont pas passées comme il l'avait prédit. **Churchill**

Exercice 1: (3,5 points : 2-1,5)

Déterminer les limites en +∞ des suites suivantes :

$$\mathbf{a)} \quad u_n = \frac{3 + \sin n}{3n - \sin n}$$

b)
$$u_n = \sqrt{9n^2 + 7} - 5n$$

Exercice 2:

(7,5 points : 1 - 0,5 - 0,5 - 1,5 - 2 - 1 - 1)

Partie A

On considère l'algorithme suivant :

Variables:	k et p sont des entiers naturels	En langage python
	u est un réel	
Entrée:	Demander la valeur de p	<pre>p = int(input("Saisie du rang:"))</pre>
Traitement:		u = 5
	Affecter à <i>u</i> la valeur 5	for k in range $(1,p+1)$:
	Pour <i>k</i> allant de 1 à <i>p</i>	u = 0.5*u + 0.5*(k-1) - 1.5
	Affecter à u la valeur $0,5u+0,5(k-1)-1,5$	print(u)
	Fin de pour	
Sortie:	Afficher u	

Faire fonctionner cet algorithme pour p = 2 en indiquant les valeurs des variables à chaque étape. Quel nombre obtient-on en sortie ?

Partie B

Soit (u_n) la suite définie par son premier terme $u_0 = 5$ et, pour tout entier naturel n, par :

$$u_{n+1} = 0.5u_n + 0.5n - 1.5$$
.

- 1. Modifier l'algorithme de la première partie pour obtenir en sortie toutes les valeurs de u_n pour n variant de 1 à p.
- 2. A l'aide de l'algorithme modifié, après avoir saisi p = 4, on obtient les résultats suivants :

n	1	2	3	4
u_n	1	-0,5	-0,75	-0,375

Peut-on affirmer, à partir de ces résultats, que la suite (u_n) est décroissante ? Justifier.

- 3. Démontrer par récurrence que pour tout entier n supérieur ou égal à 3, $u_{n+1} > u_n$. Que peut-on en déduire quant au sens de variation de la suite (u_n) ?
- 4. Soit (v_n) la suite définie pour tout entier naturel n par $v_n = 0.1u_n 0.1n + 0.5$.

 Démontrer que la suite (v_n) est géométrique de raison 0,5 et exprimer alors v_n en fonction de n.
- 5. En déduire que, pour tout entier naturel n,

$$u_n = 10 \times 0, 5^n + n - 5$$
.

6. Déterminer alors la limite de la suite (u_n) .

Exercice 3:

(9 points: 0,5 - 0,5 - 1 - 1,5 - 1,5 - 1,5 - 1 - 0,5 - 1)

Dans un pays de population constante égale à 120 millions, les habitants vivent soit en zone rurale, soit en ville. Les mouvements de population peuvent être modélisés de la façon suivante :

- en 2010, la population compte 90 millions de ruraux et 30 millions de citadins;
- chaque année, 10% des ruraux émigrent à la ville;
- chaque année, 5% des citadins émigrent en zone rurale.

Pour tout entier naturel n, on note :

- u_n la population en zone rurale, en l'année 2010+n, exprimée en millions d'habitants ;
- v_n la population en ville, en l'année 2010+n, exprimée en millions d'habitants.

On a donc $u_0 = 90$ et $v_0 = 30$.

Partie A

- 1) Traduire le fait que la population totale est constante par une relation liant u_n et v_n .
- 2) On utilise un tableur pour visualiser l'évolution des suites (u_n) et (v_n) .

Quelles formules peut-on saisir dans les cellules B3 et C3 qui, recopiées vers le bas, permettent d'obtenir la feuille de calcul ci-dessous ?

	A	В	С
1	n	Population en zone rurale	Population en ville
2	0	90	30
3	1	82,5	37,5
4	2	76,125	43,875
5	3	70,706	49,294
6	4	66,100	53,900
7	5	62,185	57.815
8	6	58,857	61,143
9	7	56,029	63,971
10	8	53,625	66,375
11	9	51,581	68,419
12	10	49,844	70,156
13	11	48,367	71,633
14	12	47,112	72,888
15	13	46,045	73,955
16	14	45,138	74,862
17	15	44,368	75,632
18	16	43,713	76,287
19	17	43,156	76,844
20	18	42,682	77,318
21	19	42,280	77,720
22	20	41,938	78,062
•••	•••		•••
59	57	40,005	79,995
60	58	40,004	79,996
61	59	40,003	79,997
62	60	40,003	79,997
63	61	40,002	79,998

3) Quelles conjectures peut-on faire concernant l'évolution à long terme de cette population ?

Partie B

- 1) Justifier que, pour tout entier naturel n, on a : $u_{n+1} = 0.85u_n + 6$.
- 2) a) Démontrer par récurrence que la suite (u_n) est décroissante et que tous ses termes sont positifs. Que peut-on en déduire pour la suite (u_n) .
 - b) On considère la suite (w_n) , définie par : $w_n = u_n 40$, pour tout n > 0.
 - a. Démontrer que (w_n) est une suite géométrique de raison 0,85.
 - b. En déduire l'expression de w_n , puis de u_n en fonction de n.
 - c. Déterminer l'expression de v_n en fonction de n.
 - c) Valider ou invalider les conjectures effectuées à la question 3) de la partie A.

Soignez la rédaction et la présentation!
Bon courage!

Spécialité Mathématiques

Contrôle sur les suites numériques - CORRIGE

Exercice 1: Déterminer les limites en $+\infty$ des suites suivantes :

(3,5 points: 2-1,5)

a)
$$u_n = \frac{3 + \sin n}{3n - \sin n}$$

Pour tout entier naturel *n* non nul:

$$-1 \le \sin n \le 1$$

$$\Leftrightarrow 3 - 1 \le 3 + \sin n \le 3 + 1$$

Or pour tout entier naturel n non nul : $3n - \sin n > 0$, donc :

$$\frac{2}{3n-\sin n} \le \frac{3+\sin n}{3n-\sin n} \le \frac{4}{3n-\sin n}$$

Or pour tout entier naturel n non nul:

$$-1 \le \sin n \le 1$$

$$\Leftrightarrow 1 \ge -\sin n \ge -1$$

$$\Leftrightarrow 3n+1 \ge 3n-\sin n \ge 3n-1$$

$$\Leftrightarrow \frac{1}{3n+1} \le \frac{1}{3n-\sin n} \le \frac{1}{3n-1}$$

$$\Leftrightarrow \frac{2}{3n+1} \le \frac{2}{3n-\sin n} \le \frac{2}{3n-1}$$

$$\frac{2}{3n+1} \le \frac{2}{3n-\sin n} \le \frac{3+\sin n}{3n-\sin n} \le \frac{4}{3n-\sin n} \le \frac{2}{3n-1}$$

Donc:

Or: $\lim_{n \to +\infty} \frac{2}{3n+1} = \lim_{n \to +\infty} \frac{2}{3n-1} = 0$

Donc par encadrement : $\lim_{n \to +\infty} \frac{3 + \sin n}{3n - \sin n} = 0$

b)
$$u_n = \sqrt{9n^2 + 7} - 5n = \sqrt{n^2 \left(9 + \frac{7}{n^2}\right)} - 5n = n\sqrt{9 + \frac{7}{n^2}} - 5n = n\left(\sqrt{9 + \frac{7}{n^2}} - 5\right)$$

Or:
$$\lim_{n \to +\infty} \frac{7}{n^2} = 0$$
 donc $\lim_{n \to +\infty} \sqrt{9 + \frac{7}{n^2}} = 3$ et $\lim_{n \to +\infty} \sqrt{9 + \frac{7}{n^2}} - 5 = -2$

Par produit :
$$\lim_{n \to +\infty} n \left(\sqrt{9 + \frac{7}{n^2}} - 5 \right) = -\infty$$

Exercice 2:

(7,5 points: 1 - 0,5 - 0,5 - 1,5 - 2 - 1 - 1)

Partie A

On considère l'algorithme suivant :

On considere i d	igoriinme suivani.		
Variables:	k et p sont des entiers naturels	En langage python	
	u est un réel		
Entrée :	Demander la valeur de <i>p</i>	p = int(input("Saisie du rang:"))	
Traitement:		u = 5	
	Affecter à <i>u</i> la valeur 5	for k in range (1,p+1):	
	Pour <i>k</i> allant de 1 à <i>p</i>	u = 0.5*u + 0.5*(k-1) - 1.5	
	Affecter à u la valeur $0.5u+0.5(k-1)-1.5$	print(u)	
	Fin de pour		
Sortie:	Afficher u		

Faire fonctionner cet algorithme pour p = 2 en indiquant les valeurs des variables à chaque étape.

Quel nombre obtient-on en sortie?

k	p	и
	2	5
1	2	1
2	2	-0,5

On obtient le nombre -0.5.

Partie B

Soit (u_n) la suite définie par son premier terme $u_0 = 5$ et, pour tout entier naturel n, par :

$$u_{n+1} = 0.5u_n + 0.5n - 1.5$$
.

1. Modifier l'algorithme de la première partie pour obtenir en sortie toutes les valeurs de u_n pour n variant de 1 à p.

n variani de 1 d p .	
Variables:	k et p sont des entiers naturels
	u est un réel
Entrée :	Demander la valeur de p
Traitement:	
	Affecter à <i>u</i> la valeur 5
	Pour <i>k</i> allant de 1 à <i>p</i>
	Affecter à u la valeur $0,5u+0,5(k-1)-1,5$
	Afficher <i>u</i>
Sortie:	Fin de pour

2. A l'aide de l'algorithme modifié, après avoir saisi p = 4, on obtient les résultats suivants :

n	1	2	3	4
u_n	1	-0,5	-0,75	-0,375

Peut-on affirmer, à partir de ces résultats, que la suite (u_n) est décroissante ? Justifier.

On obtient $u_1 > u_2$ et $u_2 > u_3$ mais $u_3 < u_4$: on ne peut dire que la suite (u_n) est décroissante.

3. Démontrer par récurrence que pour tout entier n supérieur ou égal à 3, $u_{n+1} > u_n$.

Que peut-on en déduire quant au sens de variation de la suite (u_n) ?

Initialisation : nous avons vu que $u_3 < u_4$ donc la propriété est initialisée.

Hérédité: Supposons qu'il existe un rang n tel que : $u_n < u_{n+1}$, cela implique-t-il $u_{n+1} < u_{n+2}$?

Par hypothèse :
$$u_n < u_{n+1}$$
 $\Leftrightarrow 0.5u_n < 0.5u_{n+1}$ $\Leftrightarrow 0.5u_n + 0.5n - 1.5 < 0.5u_{n+1} + 0.5n - 1.5$ $\Leftrightarrow u_{n+1} < 0.5u_{n+1} + 0.5(n+1) - 0.5 - 1.5$ $\Leftrightarrow u_{n+1} < u_{n+2} - 0.5 < u_{n+2} : 1$ 'hérédité est vérifiée.

Par récurrence, pour tout entier nature $n \ge 3$, la suite (u_n) est croissante.

4. Soit (v_n) la suite définie pour tout entier naturel n par $v_n = 0.1u_n - 0.1n + 0.5$.

Démontrer que la suite (v_n) est géométrique de raison 0,5 et exprimer alors v_n en fonction de n.

$$\begin{split} v_{n+1} &= 0.1u_{n+1} - 0.1(n+1) + 0.5 \\ &= 0.1(0.5u_n + 0.5n - 1.5) - 0.1n - 0.1 + 0.5 \\ &= 0.05u_n + 0.05n - 0.15 - 0.1n - 0.1 + 0.5 \\ &= 0.05u_n - 0.05n + 0.25 \\ &= 0.5(0.1u_n - 0.1n + 0.5) \\ &= 0.5v_n \end{split}$$

La suite (v_n) est géométrique de raison 0,5 et de premier terme :

$$v_0 = 0.1u_0 - 0.1 \times 0 + 0.5 = 0.1 \times 5 + 0.5 = 1$$

Donc pour tout entier naturel n:

$$v_n = 1 \times 0, 5^n = 0, 5^n$$
.

5. En déduire que, pour tout entier naturel n, $u_n = 10 \times 0, 5^n + n - 5$.

Ainsi:
$$0.1u_n = v_n + 0.1n - 0.5$$

 $\Leftrightarrow u_n = 10(0.5^n + 0.1n - 0.5)$
 $\Leftrightarrow u_n = 10 \times 0.5^n + n - 5$

6. Déterminer alors la limite de la suite (u_n) .

$$0 < 0, 5 < 1 \text{ donc}: \lim_{n \to +\infty} 0, 5^n = 0$$

Par somme :
$$\lim_{n \to +\infty} 10 \times 0, 5^n + n - 5 = +\infty$$

Exercice 3:

Dans un pays de population constante égale à 120 millions, les habitants vivent soit en zone rurale, soit en ville. Les mouvements de population peuvent être modélisés de la façon suivante :

- en 2010, la population compte 90 millions de ruraux et 30 millions de citadins;
- chaque année, 10% des ruraux émigrent à la ville;
- chaque année, 5% des citadins émigrent en zone rurale.

Pour tout entier naturel n, on note:

- u_n la population en zone rurale, en l'année 2010+n, exprimée en millions d'habitants ;
- v_n la population en ville, en l'année 2010+n, exprimée en millions d'habitants.

On a donc $u_0 = 90$ et $v_0 = 30$.

Partie A

1) Traduire le fait que la population totale est constante par une relation liant u_n et v_n .

Chaque année n, la population reste constante donc : $u_n + v_n = 120$.

2) On utilise un tableur pour visualiser l'évolution des suites (u_n) et (v_n) .

Quelles formules peut-on saisir dans les cellules B3 et C3 qui, recopiées vers le bas, permettent d'obtenir la feuille de calcul ci-dessous ?

	A	В	С
1	n	Population en zone rurale	Population en ville
2	0	90	30
3	1	82,5	37,5
4	2	76,125	43,875
5	3	70,706	49,294
6	4	66,100	53,900

			\sim 1
7	5	62,185	57.815
8	6	58,857	61,143
9	7	56,029	63,971
10	8	53,625	66,375
11	9	51,581	68,419
12	10	49,844	70,156
13	11	48,367	71,633
14	12	47,112	72,888
15	13	46,045	73,955
16	14	45,138	74,862
17	15	44,368	75,632
18	16	43,713	76,287
19	17	43,156	76,844
20	18	42,682	77,318
21	19	42,280	77,720
22	20	41,938	78,062
•••	•••	•••	
59	57	40,005	79,995
60	58	40,004	79,996
61	59	40,003	79,997
62	60	40,003	79,997
63	61	40,002	79,998

Chaque année, 10% des ruraux émigrent à la ville et 5% des citadins émigrent en zone rurale :

$$u_{n+1} = u_n - 10\% \times u_n + 5\% \times v_n = 0,9 \times u_n + 0,05 \times v_n$$

Puis:
$$v_{n+1} = 120 - u_{n+1}$$
.

Donc dans la cellule B3, on peut écrire :

$$= B2 \times 0.9 + C2 \times 0.05$$

Et dans la cellule C3:

$$=120-B3$$

Ou:
$$= B2 \times 0.1 + C2 \times 0.95$$

3) Quelles conjectures peut-on faire concernant l'évolution à long terme de cette population ?

Il semble que : la suite (u_n) soit décroissante et ait pour limite la valeur 40.

la suite (v_n) soit croissante et ait pour limite la valeur 80.

Partie B

1) Justifier que, pour tout entier naturel n, on a : $u_{n+1} = 0.85u_n + 6$.

D'après ce qui précède :

$$u_{n+1} = 0.9 \times u_n + 0.05 \times v_n$$

Or:
$$v_n = 120 - u_n$$

Donc:
$$u_{n+1} = 0.9u_n + 0.05(120 - u_n) = 0.9u_n - 0.05u_n + 6 = 0.85u_n + 6$$
.

2) a) Démontrer par récurrence que la suite (u_n) est décroissante et que tous ses termes sont positifs. Que peut-on en déduire pour la suite (u_n) .

Initialisation:
$$u_0 = 90$$
 et $u_1 = 0.85u_0 + 6 = 0.85 \times 90 + 6 = 82.5$. Ainsi: $u_0 > u_1 > 0$

→l'initialisation est vérifiée

Hérédité: Supposons qu'il existe un rang n tel que : $u_n > u_{n+1} > 0$,

cela implique-t-il $u_{n+1} > u_{n+2} > 0$?

Par hypothèse :
$$u_n > u_{n+1} > 0$$

 $\Leftrightarrow 0.85u_n > 0.85u_{n+1} > 0$
 $\Leftrightarrow 0.85u_n + 6 > 0.85u_{n+1} + 6 > 6 > 0$
 $\Leftrightarrow u_{n+1} > u_{n+2} > 0$: l'hérédité est vérifiée

Ainsi, par récurrence, pour tout entier naturel n, la suite (u_n) est décroissante et que tous ses termes sont positifs.

- **b**) On considère la suite (w_n) , définie par : $w_n = u_n 40$, pour tout n > 0.
 - i. Démontrer que (w_n) est une suite géométrique de raison 0,85.

$$w_{n+1} = u_{n+1} - 40 = u_{n+1} - 40 = 0,85u_n + 6 - 40 = 0,85u_n - 34 = 0,85 \left(u_n - \frac{34}{0,85}\right)$$
$$= 0,85 \left(u_n - 40\right) = 0,85w_n$$

La suite (w_n) est géométrique de raison 0,85.

ii. En déduire l'expression de w_n , puis de u_n en fonction de n.

$$w_0 = u_0 - 40 = 90 - 40 = 50$$
.

Donc pour tout entier naturel n:

$$w_n = 50 \times 0.85^n$$

et:
$$u_n = w_n + 40 = 50 \times 0.85^n + 40$$

iii. Déterminer l'expression de v_n en fonction de n.

$$v_n = 120 - u_n = 120 - 50 \times 0,85^n + 40 = 80 - 50 \times 0,85^n$$

c) Valider ou invalider les conjectures effectuées sur la suite (v_n) à la question 3) de la partie A.

$$0 < 0.85 < 1$$
 donc: $\lim_{n \to +\infty} 0.85^n = 0$

Par somme : $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} 80 - 50 \times 0,85^n = 80$: cette hypothèse est vérifiée.

$$\begin{split} v_{n+1} - v_n &= \left(80 - 50 \times 0, 85^{n+1}\right) - \left(80 - 50 \times 0, 85^n\right) \\ &= 80 - 50 \times 0, 85^{n+1} - 80 + 50 \times 0, 85^n \\ &= 50 \times \left(0, 85^n - 0, 85^{n+1}\right) \\ &= 50 \times \left(0, 85^n \times 1 - 0, 85^n \times 0, 85\right) \\ &= 50 \times 0, 85^n \left(1 - 0, 85\right) \\ &= 50 \times 0, 85^n \times 0, 15 \end{split}$$

Donc $v_{n+1} - v_n > 0$ et la suite (v_n) est strictement croissante.