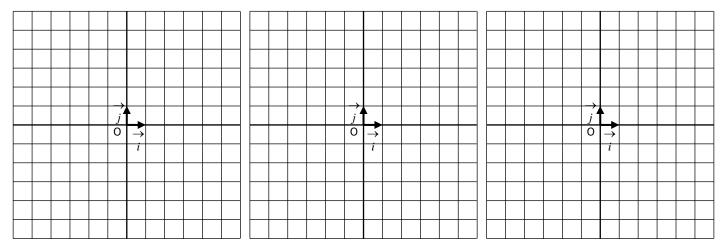
EXERCICE 5B.1

- **a.** $\lim_{x \to +\infty} f(x) (2x-1) = 0$ revient à dire que C_f admet en une asymptote d'équation $y = \dots$
- **b.** revient à dire que C_f admet en $+\infty$ une asymptote d'équation y = 2x + 3
- c. $\lim_{x \to \infty} f(x) 2x 1 = 0$ revient à dire que C_f admet en une asymptote d'équation $y = \dots$
- **d.** revient à dire que C_f admet en $-\infty$ une asymptote d'équation y = -x + 1
- e. $\lim_{x \to +\infty} f(x) + 3x 5 = 0$ revient à dire que C_f admet en une asymptote d'équation $y = \dots$
- **f.** revient à dire que C_f admet en $+\infty$ une asymptote d'équation $y = \frac{2}{3}x$

EXERCICE 5B.2 Dans chaque cas, construire une courbe qui satisfait aux conditions données :



f définie sur $]-2;+\infty[$. g définie sur $]-\infty;4[$. h définie sur $]-5;+\infty[$.

f décroissante sur $]-2;+\infty[$. g croissante sur $]-\infty;2]$. h croissante sur $]-5;+\infty[$.

f(0)=2 g décroissante sur [2;4[. h(1)=3

 C_f admet deux asymptotes : g(2)=3 $\lim_{x\to -5} f(x) = -\infty$ C_g admet deux asymptotes : 1

EXERCICE 5B.3 On considère la fonction f définie sur $]-3;+\infty[$ par : $f(x) = 2x + 1 + \frac{5}{x+3}$

- 1. a. Déterminer les limites de f aux bornes de l'ensemble de définition.
 - ${f b}$. En déduire que f admet une asymptote dont on indiquera l'équation.
- **2. a.** Démontrer que C_f admet la droite d'équation y = 2x + 1 pour asymptote en $+\infty$.
 - **b.** Indiquer la position de C_f par rapport à son asymptote.

EXERCICE 5B.4 On considère la fonction g définie sur $]-\infty;1[$ par : $g(x) = \frac{x^2 - 6x + 3}{x - 1}$

- 1. a. Déterminer les limites de g aux bornes de l'ensemble de définition.
 - **b.** En déduire que g admet une asymptote dont on indiquera l'équation.
- **2. a.** Démontrer que C_g admet la droite d'équation y = x 5 pour asymptote en $-\infty$.
 - **b.** Indiquer la position de C_g par rapport à son asymptote.

CORRIGE - NOTRE DAME DE LA MERCI - MONTPELLIER - M. QUET

EXERCICE 5B.1

 $\lim_{x \to +\infty} f(x) - (2x-1) = 0$ revient à dire que C_f admet en $+\infty$ une asymptote d'équation y = 2x - 1

 $\lim_{x\to+\infty} f(x) - (2x+3) = 0$ y = 2x + 3b. revient à dire que C_f admet en $+\infty$ une asymptote d'équation

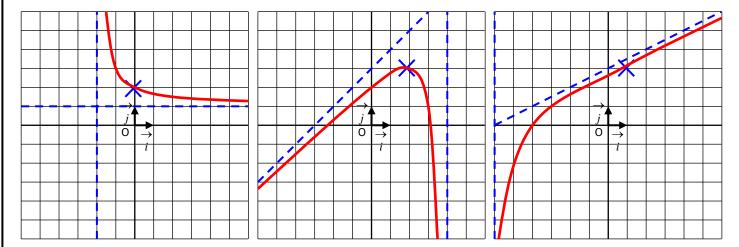
 $\lim_{x\to\infty} f(x) - 2x - 1 = 0$ revient à dire que C_f admet en $-\infty$ une asymptote d'équation y = 2x + 1

 $\lim_{x \to -\infty} f(x) + x - 1 = 0$ d. revient à dire que C_f admet en $-\infty$ une asymptote d'équation

 $\lim_{x \to +\infty} f(x) + 3x - 5 = 0$ revient à dire que C_f admet en $+\infty$ une asymptote d'équation y = -3x + 5e.

 $\lim_{x \to +\infty} f(x) - \frac{2}{3}x = 0$ f. revient à dire que C_f admet en $+\infty$ une asymptote d'équation $y = \frac{2}{3}x$

EXERCICE 5B.2 Dans chaque cas, construire une courbe qui satisfait aux conditions données :



f définie sur $]-2;+\infty[$. g définie sur $]-\infty;4[$.

h définie sur $]-5;+\infty[$. f décroissante sur $]-2;+\infty[$. g croissante sur $]-\infty;2]$. h croissante sur $]-5;+\infty[$.

g décroissante sur [2;4]. h(1) = 3f(0) = 2

 $\lim_{x \to -5} f(x) = -\infty$ C_f admet deux asymptotes : g(2) = 3

 \rightarrow y = x + 3

 C_g admet deux asymptotes : $\rightarrow x = -2$ $\lim_{x \to +\infty} f(x) - \frac{1}{2}x - 3 = 0^{-1}$ $\rightarrow y=1$ $\rightarrow x = 4$

On considère la fonction f définie sur]-3;+ ∞ [par : $f(x) = 2x + 1 + \frac{5}{x+3}$ **EXERCICE 5B.3**

1. a. Déterminer les limites de f aux bornes de l'ensemble de définition.

 $\lim_{x \to +\infty} 2x + 1 = +\infty \quad \text{et} \quad \lim_{x \to +\infty} x + 3 = +\infty \quad \text{donc} \quad \lim_{x \to +\infty} \frac{5}{x+3} = 0^+ \quad \text{donc par somme} : \lim_{x \to +\infty} f(x) = +\infty$

 $\lim_{x \to -3} 2x + 1 = 2 \times (-3) + 1 = -5 \text{ et } \lim_{x \to -3} x + 3 = 0^+ \text{ donc } \lim_{x \to -3} \frac{5}{x+3} = +\infty \text{ : par somme : } \lim_{x \to -3} f(x) = +\infty$

b. En déduire que f admet une asymptote dont on indiquera l'équation.

Lorsque x tend vers -3, alors la fonction f tend vers $+\infty$.

Donc la courbe représentant f admet une asymptote verticale d'équation x = -3.

2. a. Démontrer que C_f admet la droite d'équation y = 2x + 1 pour asymptote en $+\infty$.

$$\lim_{x \to +\infty} f(x) - (2x+1) = \lim_{x \to +\infty} \frac{5}{x+3} = 0^+$$

Donc C_f admet la droite d'équation y = 2x + 1 pour asymptote en $+\infty$.

b. Indiquer la position de C_f par rapport à son asymptote.

 $\lim_{x \to +\infty} f(x) - (2x+1) = 0^+$ donc C_f est au-dessus de son asymptote.

EXERCICE 5B.4 On considère la fonction g définie sur $]-\infty;1[$ par : $g(x) = \frac{x^2 - 6x + 3}{x - 1}$

1. a. Déterminer les limites de g aux bornes de l'ensemble de définition.

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} \frac{x^2 - 6x + 3}{x - 1} = \lim_{x \to -\infty} \frac{x^2 \left(1 - \frac{6}{x} + \frac{3}{x^2}\right)}{x \left(1 - \frac{1}{x}\right)} = \lim_{x \to -\infty} \frac{x \left(1 - \frac{6}{x} + \frac{3}{x^2}\right)}{1 - \frac{1}{x}}$$

 $\lim_{x \to -\infty} x = -\infty \quad \text{et} \quad \lim_{x \to -\infty} 1 - \frac{6}{x} + \frac{3}{x^2} = 1 \quad \text{donc par produit} : \quad \lim_{x \to -\infty} x \left(1 - \frac{6}{x} + \frac{3}{x^2} \right) = -\infty$

 $\lim_{x \to -\infty} 1 - \frac{1}{x} = 1 \quad \text{donc par quotient} : \lim_{x \to -\infty} g(x) = -\infty$

 $\lim_{\substack{x \to 1 \\ x < 1}} x^2 - 6x + 3 = 1^2 - 6 \times 1 + 3 = -1 \text{ et } \lim_{\substack{x \to 1 \\ x < 1}} x - 1 = 0^- \text{ donc par quotient : } \lim_{\substack{x \to 1 \\ x < 1}} g(x) = +\infty$

b. En déduire que g admet une asymptote dont on indiquera l'équation.

Lorsque x tend vers 1, alors la fonction g tend vers $+\infty$.

Donc la courbe représentant g admet une asymptote verticale d'équation x=1.

2. a. Démontrer que C_g admet la droite d'équation y = x - 5 pour asymptote en $-\infty$.

$$\lim_{x \to -\infty} g(x) - (x-5) = \lim_{x \to -\infty} \frac{x^2 - 6x + 3}{x - 1} - (x-5) \times \frac{x - 1}{x - 1} = \lim_{x \to -\infty} \frac{x^2 - 6x + 3 - (x^2 - x - 5x + 5)}{x - 1}$$

$$= \lim_{x \to -\infty} \frac{x^2 - 6x + 3 - x^2 + x + 5x - 5}{x - 1} = \lim_{x \to -\infty} \frac{-2}{x - 1} = 0^+$$

Donc C_g admet la droite d'équation y = x - 5 pour asymptote en $-\infty$.

b. Indiquer la position de C_g par rapport à son asymptote.

 $\lim_{x \to \infty} g(x) - (x-5) = 0^+$ donc C_g est au-dessus de son asymptote.

