EOUATIONS LOGARITHMIQUES

EXERCICE 3A.1

1. Résoudre dans \mathbb{R} les équations (on rappelle que ln n'est défini que sur $]0;+\infty[$):

a.
$$\ln x = \ln 10$$
 avec $x \in [0; +\infty[$

b.
$$\ln(3+x) = \ln(2-x)$$
 avec $x \in]-3;2[$

c.
$$\ln 5x = 1$$
 avec $x \in]0; +\infty[$

d.
$$\ln(2x+6)=1$$
 avec $x \in]-3;+\infty[$

e.
$$\ln(4x-2)=0$$
 avec $x \in \left[\frac{1}{2}; +\infty\right[$

f.
$$\ln(1-x^2) = \ln(1-x)$$
 avec $x \in]-1;1[$

2. Ecrire les équations suivantes sous la forme « $\ln A = \ln B$ » puis les résoudre dans $\mathbb R$:

a.
$$\ln x + \ln 4 = \ln 6 - \ln x$$
 avec $x \in]0; +\infty[$ **b.** $2\ln(x+3) = \ln 36$ avec $x \in]-3; +\infty[$

b.
$$2\ln(x+3) = \ln 36$$
 avec $x \in [-3; +\infty]$

c.
$$\ln x + \ln(x-1) = \ln(x^2-4)$$
 avec $x \in]2; +\infty[$ **d.** $2\ln(x-3) = \ln(5-x)$ avec $x \in]3;5[$

d.
$$2\ln(x-3) = \ln(5-x)$$
 avec $x \in]3;5[$

e.
$$\ln(x-6) = \frac{1}{2} \ln 25$$
 avec $x \in]6; +\infty[$ **f.** $2 \ln x - \ln 9 = 1$ avec $x \in]0; +\infty[$

f.
$$2\ln x - \ln 9 = 1$$
 avec $x \in [0; +\infty]$

Exercice 3A.2:

Résoudre les équations suivantes :

a)
$$\ln(3x+27)=0$$

b)
$$1 = \ln(2 - 5x)$$

c)
$$\ln(6x+18)=4$$

Exercice 3B.3:

Résoudre les équations suivantes :

a)
$$\ln(2x+8) = \ln(5-7x)$$

b)
$$\ln(x-2) = \ln(-1-x)$$

c)
$$\ln\left(\frac{x+8}{5-x}\right) = 4$$

d)
$$\ln(x-3)-\ln(5+x)=0$$

Exercice 3B.4: Résoudre les équations suivantes :

a)
$$\ln(x-5) + \ln(x+4) = \ln 12$$

b)
$$\ln\left(x^2 - 4x\right) = \ln\left(5x\right)$$

Exercice 3B.5: Résoudre les systèmes suivants :

a)
$$\begin{cases} \ln(xy+y-x-1) = 1\\ xy+x+y = 2 \end{cases}$$

b)
$$\begin{cases} \ln x + \ln y = 1 \\ x + y = 4 \end{cases}$$

c)
$$\begin{cases} x - y = \frac{1}{2} \\ \ln x + \ln y = 0 \end{cases}$$

d)
$$\begin{cases} 5 \ln x + 2 \ln y = 26 \\ 2 \ln x - 3 \ln y = -1 \end{cases}$$

e)
$$\begin{cases} \ln(xy) = 4 \\ (\ln x)(\ln y) = -12 \end{cases}$$

CORRIGE - Notre Dame de La Merci - Montpellier - M. Quet

EXERCICE 3A.1

1. Résoudre dans \mathbb{R} les équations (on rappelle que ln n'est défini que sur $]0;+\infty[$):

a.
$$\ln x = \ln 10$$
 avec $x \in]0; +\infty[$
 $\Leftrightarrow x = 10$ $\rightarrow S = \{10\}$

b.
$$\ln(3+x) = \ln(2-x)$$
 avec $x \in]-3;2[$ $\Leftrightarrow 3+x=2-x \Leftrightarrow 2x=-1 \Leftrightarrow x=-\frac{1}{2} \Rightarrow S = \left\{-\frac{1}{2}\right\}$

$$\mathbf{c.} \quad \ln 5x = 1 \quad \text{avec } x \in \left]0; +\infty\right[$$

$$\Leftrightarrow \ln 5x = \ln e \iff 5x = e \iff x = \frac{e}{5} \Rightarrow S = \left\{\frac{e}{5}\right\}$$

d.
$$\ln(2x+6)=1$$
 avec $x \in]-3;+\infty[$ $\Leftrightarrow \ln(2x+6)=\ln e \Leftrightarrow 2x+6=e \Leftrightarrow x=\frac{e-6}{2}$ $\frac{e-6}{2} \in]-3;+\infty[$ donc $S = \left\{\frac{e-6}{2}\right\}$

e.
$$\ln(4x-2) = 0$$
 avec $x \in \left[\frac{1}{2}; +\infty\right]$
 $\Leftrightarrow \ln(4x-2) = \ln 1 \Leftrightarrow 4x-2 = 1 \Leftrightarrow x = \frac{3}{4}$
 $\frac{3}{4} \in \left[\frac{1}{2}; +\infty\right]$ donc $S = \left\{\frac{3}{4}\right\}$

f.
$$\ln(1-x^2) = \ln(1-x)$$
 avec $x \in]-1;1[$
 $\Leftrightarrow 1-x^2 = 1-x \Leftrightarrow x^2 - x = 0 \Leftrightarrow x(x-1) = 0$
2 solutions 0 et 1 mais $1 \notin]-1;1[$ donc $S = \{0\}$

2. Ecrire les équations suivantes sous la forme « $\ln A = \ln B$ » puis les résoudre dans $\mathbb R$:

a.
$$\ln x + \ln 4 = \ln 6 - \ln x$$
 avec $x \in]0; +\infty[$

$$\Leftrightarrow 2 \ln x = \ln 6 - \ln 4 \Leftrightarrow \ln x^2 = \ln \frac{6}{4} \Leftrightarrow x^2 = \frac{3}{2}$$

2 sol
$$-\sqrt{\frac{3}{2}}$$
 et $\sqrt{\frac{3}{2}}$ mais $-\sqrt{\frac{3}{2}} \notin \left]0; +\infty\right[\rightarrow S = \left\{\sqrt{\frac{3}{2}}\right\}$

2 sol -9 et 3 mais
$$-9 \notin]-3;+\infty[$$
 donc $S = \{3\}$
d. $2\ln(x-3) = \ln(5-x)$ avec $x \in [3;5[$

 $2\ln(x+3) = \ln 36$ avec $x \in [-3; +\infty]$

 \Leftrightarrow $\ln(x+3)^2 = \ln 36 \Leftrightarrow (x+3)^2 = 36$

 $\Leftrightarrow (x+3)^2 - 6^2 = 0 \Leftrightarrow (x-3)(x+9) = 0$

$$\Leftrightarrow \ln \left[x(x-1) \right] = \ln \left(x^2 - 4 \right) \Leftrightarrow x^2 - x = x^2 - 4$$

c. $\ln x + \ln(x-1) = \ln(x^2-4)$ avec $x \in [2; +\infty[$

$$\Leftrightarrow -x = -4 \Leftrightarrow x = 4 \text{ avec } 4 \in]2; +\infty[\rightarrow S = \{4\}]$$

$$\Leftrightarrow \ln(x-3)^2 = \ln(5-x) \Leftrightarrow x^2 - 6x + 9 = 5 - x$$

 $\Leftrightarrow x^2 - 5x + 4 = 0 \Leftrightarrow (x-4)(x-1) = 0$
2 sol : 1 et 4 mais $1 \notin]3;5[$ donc $S = \{4\}$

e.
$$\ln(x-6) = \frac{1}{2} \ln 25$$
 avec $x \in]6; +\infty[$
 $\Leftrightarrow \ln(x-6) = \ln \sqrt{25} \Leftrightarrow \ln(x-6) = \ln 5$

$$\Leftrightarrow x - 6 = 5 \Leftrightarrow x = 11$$

$$11 \in]6; +\infty[\rightarrow S = \{11\}$$

La Merci

Exercice 3A.2: Résoudre les équations suivantes :

a)
$$\ln(3x+27) = 0$$

b)
$$1 = \ln(2 - 5x)$$

c)
$$\ln(6x+18)=4$$

$$3x + 27 > 0 \iff x > -9$$

$$D_{\rm F} = \left[-9; +\infty \right]$$

1) Domaine d'existence des solutions :
$$\begin{vmatrix} 2 - 5x > 0 & \Leftrightarrow & x < \frac{2}{3} \end{vmatrix} = \begin{vmatrix} 6 & 6 & 6 \end{vmatrix}$$

$$2-5x > 0 \iff x < \frac{2}{5}$$

$$D_{E} = \left[-\infty; \frac{2}{5} \right]$$

$$6x+18>0 \iff x>-3$$

$$D_{E} =]-3; +\infty[$$

2) Résolution:

$$\ln(3x+27)=0$$

$$\Leftrightarrow \ln(3x+27) = \ln 1$$

$$\Leftrightarrow$$
 3x + 27 = 1

$$\Leftrightarrow x = \frac{-26}{3}$$

$$1 = \ln(2 - 5x)$$

$$\Leftrightarrow \ln e = \ln(2 - 5x)$$

$$\Leftrightarrow e = 2 - 5x$$

$$\Leftrightarrow e = 2 - 5x$$

$$\Leftrightarrow x = \frac{2-e}{5}$$

$$\ln(6x+18)=4$$

$$\Leftrightarrow e^{\ln(6x+18)} = e^4$$

$$\Leftrightarrow$$
 6x+18= e^4

$$\Leftrightarrow 6x + 18 = e^4$$

$$\Leftrightarrow x = \frac{e^4 - 18}{6}$$

3) Vérification :

$$\frac{-26}{3} \in \left] -9; +\infty \right[$$

$$\left| \frac{2-e}{5} \in \right] -\infty; \frac{2}{5} \left[$$

$$\frac{e^4 - 18}{6} \in \left] -3; +\infty \right[$$

$$S = \left\{ \frac{-26}{3} \right\}$$

$$S = \left\{ \frac{2 - e}{5} \right\}$$

$$S = \left\{ \frac{e^4 - 18}{6} \right\}$$

La Merci

Exercice 3B.3: Résoudre les équations suivantes :

$$\ln(2x+8) = \ln(5-7x)$$

1) Domaine d'existence des solutions :

Il faut que
$$2x+8>0 \iff x>-4$$
 et $5-7x>0 \iff x<\frac{5}{7}$ $\Rightarrow D_{\rm E}=\left[-4;\frac{5}{7}\right]$

$$\Rightarrow D_{\rm E} = \left[-4; \frac{5}{7} \right]$$

2) Résolution:

La fonction logarithme est strictement croissante :

$$\ln(2x+8) = \ln(5-7x)$$

$$\Leftrightarrow 2x+8=5-7x$$

$$\Leftrightarrow 2x + 7x = 5 - 8$$

$$\Leftrightarrow x = \frac{-3}{9} = -\frac{1}{3}$$

3) **Vérification**:
$$-\frac{1}{3} \in \left[-4; \frac{5}{7} \right]$$

4) Solution :
$$S = \left\{ -\frac{1}{3} \right\}$$

b)
$$\ln(x-2) = \ln(-1-x)$$

1) Domaine d'existence des solutions :

Il faut que $x-2>0 \Leftrightarrow x>2$ et $-1-x>0 \Leftrightarrow -x>1 \Leftrightarrow x<-1$ $\rightarrow D_{\rm F}=\emptyset$ Cette équation n'admet pas de solution.

c)
$$\ln\left(\frac{x+8}{5-x}\right) = 4$$

1) Domaine d'existence des solutions :

Il faut que $5-x\neq 0 \iff x\neq 5$ et $\frac{x+8}{5-x}>0: x+8>0 \iff x>-8$ et $5-x>0 \iff x<5:$

 \rightarrow un tableau de signes donne : $D_E =]-8;5[$

2) Résolution:

La fonction exponentielle est strictement croissante :

$$\ln\left(\frac{x+8}{5-x}\right) = 4$$

$$\Leftrightarrow e^{\ln\left(\frac{x+8}{5-x}\right)} = e^4$$

$$\Leftrightarrow \frac{x+8}{5-x} = e^4$$

$$\Leftrightarrow x+8=e^4(5-x)$$

$$\Leftrightarrow x+8=5e^4-e^4x$$

$$\Leftrightarrow x + e^4 x = 5e^4 - 8$$

$$\iff x = \frac{5e^4 - 8}{1 + e^4}$$

3) Vérification :
$$\frac{5e^4 - 8}{1 + e^4} \in]-8;5[$$

4) Solution :
$$S = \left\{ \frac{5e^4 - 8}{1 + e^4} \right\}$$

d)
$$\ln(x-3)-\ln(5+x)=0$$

1) Domaine d'existence des solutions :

Il faut que
$$x-3>0 \iff x>3$$
 et $5+x>0 \iff x>-5$

$$\rightarrow D_{\rm E} = [3; +\infty[$$

2) Résolution :

La fonction logarithme est strictement croissante :

$$\ln(x-3)-\ln(5+x)=0$$

$$\Leftrightarrow \ln(x-3) = \ln(5+x)$$

$$\Leftrightarrow x-3=5+x$$

$$\Leftrightarrow$$
 $-3=5$

Ce qui est impossible, donc cette équation n'admet pas de solution.

La Merci

Exercice 3B.4: Résoudre les équations suivantes :

$$\frac{1}{a} \ln(x-5) + \ln(x+4) = \ln 12$$

1) Domaine d'existence des solutions :

Il faut que
$$x-5>0 \Leftrightarrow x>5$$
 et $x+4>0 \Leftrightarrow x>-4$

$$\rightarrow D_{\rm E} =]5; +\infty[$$

2) Résolution:

La fonction logarithme est strictement croissante :

$$\ln(x-5) + \ln(x+4) = \ln 12$$

$$\Leftrightarrow \ln[(x-5)(x+4)] = \ln 12$$

$$\Leftrightarrow (x-5)(x+4)=12$$

$$\Leftrightarrow x^2 + 4x - 5x - 20 = 12$$

$$\Leftrightarrow x^2 - x - 32 = 0$$

$$\Delta = 1^2 - 4 \times 1 \times (-32) = 129$$
 $\Rightarrow x_1 = \frac{1 - \sqrt{129}}{2} \text{ et } x_2 = \frac{1 + \sqrt{129}}{2}$

3) Vérification:
$$\frac{1-\sqrt{129}}{2} \notin]5; +\infty[$$
 et $\frac{1+\sqrt{129}}{2} \in]5; +\infty[$

4) Solution :
$$S = \left\{ \frac{1 + \sqrt{129}}{2} \right\}$$

b)
$$\ln(x^2 - 4x) = \ln(5x)$$

1) Domaine d'existence des solutions :

Il faut que 5x > 0 et $x^2 - 4x > 0 \Leftrightarrow x(x - 4) > 0 \Leftrightarrow x \in] -\infty; 0[\cup]4; +\infty[$ $\rightarrow D_E =]4; +\infty[$

2) Résolution:

La fonction logarithme est strictement croissante :

$$\ln\left(x^2 - 4x\right) = \ln\left(5x\right)$$

$$\Leftrightarrow x^2 - 4x = 5x$$

$$\Leftrightarrow x^2 - 9x = 0$$

$$\Leftrightarrow x(x-9)=0$$

Soit x=0, soit x=9

3) Vérification:
$$0 \notin]4; +\infty[$$
 et $9 \in]4; +\infty[$

4) Solution :
$$S = \{9\}$$

La Merci

Exercice 3B.5: Résoudre les systèmes suivants :

a)
$$\begin{cases} \ln(xy + y - x - 1) = 1 \\ xy + x + y = 2 \end{cases} \Leftrightarrow \begin{cases} xy + y - x - 1 = e^1 \\ xy + x + y = 2 \end{cases} \Leftrightarrow \begin{cases} 2 - x - x - 1 = e \\ xy + y = 2 - x \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x = e - 1 \\ xy + y = 2 - x \end{cases} \Leftrightarrow \begin{cases} x = \frac{1 - e}{2} \\ \frac{1 - e}{2} \times y + y = 2 - \frac{1 - e}{2} \end{cases} \Leftrightarrow \begin{cases} x = \frac{1 - e}{2} \\ \frac{1 - e}{2} \times y + \frac{2y}{2} = \frac{4}{2} - \frac{1 - e}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{1-e}{2} \\ \frac{3-e}{2} \times y = \frac{3+e}{2} \end{cases} \Leftrightarrow \begin{cases} x = \frac{1-e}{2} \\ y = \frac{3+e}{2} \times \frac{2}{3-e} = \frac{3+e}{3-e} \end{cases} \Rightarrow S = \left\{ \left(\frac{1-e}{2}; \frac{3+e}{3-e}\right) \right\}$$

b)
$$\begin{cases} \ln x + \ln y = 1 \\ x + y = 4 \end{cases} \Leftrightarrow \begin{cases} \ln (xy) = 1 \\ x + y = 4 \end{cases} \Leftrightarrow \begin{cases} xy = e^1 \\ y = 4 - x \end{cases} \Leftrightarrow \begin{cases} x(4 - x) = e \\ y = 4 - x \end{cases} \Leftrightarrow \begin{cases} x^2 - 4x + e = 0 \\ y = 4 - x \end{cases}$$

 $\Delta = (-4)^2 - 4 \times 1 \times e = 16 - 4e : il y a deux solutions :$

$$x_1 = \frac{4 - \sqrt{16 - 4e}}{2} = 2 - \sqrt{4 - e}$$
 et $x_2 = \frac{4 + \sqrt{16 - 4e}}{2} = 2 + \sqrt{4 - e}$

On obtient:

$$y_1 = 4 - x_1 = 4 - (2 - \sqrt{4 - e}) = 2 + \sqrt{4 - e}$$
 et $y_2 = 4 - x_2 = 4 - (2 + \sqrt{4 - e}) = 2 - \sqrt{4 - e}$

Les solutions sont :

$$S = \left\{ \left(2 - \sqrt{4 - e}; 2 + \sqrt{4 - e} \right); \left(2 + \sqrt{4 - e}; 2 - \sqrt{4 - e} \right) \right\}$$

$$- y = \frac{1}{2} \qquad \left\{ x - y = \frac{1}{2} \right\} \qquad \left\{ x = \frac{1}{2} + y \right\} \qquad \left\{ x = \frac{1}{2} + y \right\}$$

$$\begin{cases} x - y = \frac{1}{2} \\ \ln x + \ln y = 0 \end{cases} \Leftrightarrow \begin{cases} x - y = \frac{1}{2} \\ \ln (xy) = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2} + y \\ xy = 1 \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2} + y \\ \left(\frac{1}{2} + y\right)y = 1 \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2} + y \\ y^2 + \frac{1}{2}y - 1 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{1}{2} + y \\ 2y^2 + y - 2 = 0 \end{cases}$$
 : $\Delta = 1^2 - 4 \times 2 \times (-2) = 17$: if y a deux solutions :

$$y_1 = \frac{-1 - \sqrt{17}}{2 \times 2} = \frac{-1 - \sqrt{17}}{4}$$
 et $y_2 = \frac{-1 + \sqrt{17}}{2 \times 2} = \frac{-1 + \sqrt{17}}{4}$

On obtient:

$$x_1 = \frac{1}{2} + y_1 = \frac{1}{2} + \frac{-1 - \sqrt{17}}{4} = \frac{1 - \sqrt{17}}{4}$$
 et $x_2 = \frac{1}{2} + y_2 = \frac{1}{2} + \frac{-1\sqrt{17}}{4} = \frac{1 + \sqrt{17}}{4}$

Les solutions sont

$$S = \left\{ \left(\frac{1 - \sqrt{17}}{4}; \frac{-1 - \sqrt{17}}{4} \right); \left(\frac{1 + \sqrt{17}}{4}; \frac{-1 + \sqrt{17}}{4} \right) \right\}$$

La Merci

$$\frac{1}{2 \ln x + 2 \ln y} = 26 \\
2 \ln x - 3 \ln y = -1$$

$$\Leftrightarrow \begin{cases}
\ln x^5 + \ln y^2 = 26 \\
\ln x^2 - \ln y^3 = -1
\end{cases}$$

$$\Leftrightarrow \begin{cases}
\ln \left(x^5 y^2\right) = 26 \\
\ln \frac{x^2}{y^3} = -1
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^5 y^2 = e^{26} \\
\frac{y^3}{x^2} = e
\end{cases}$$

$$\Leftrightarrow \begin{cases}
(x^5 y^2)^3 = (e^{26})^3 \\
y^3 = ex^2
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{15} y^6 = e^{78} \\
y^3 = ex^2
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{15} \left(e^{x^3}\right)^2 = e^{78} \\
y^3 = ex^2
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{15} \left(e^{x^3}\right)^2 = e^{78} \\
y^3 = ex^2
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{15} \left(e^{x^3}\right)^2 = e^{78} \\
y^3 = ex^2
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{15} \left(e^{x^3}\right)^2 = e^{78} \\
y^3 = e^{x^3}
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{19} = \frac{e^{78}}{e^2} \\
y^3 = e^{x^2}
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{19} = e^{76} \\
y^3 = e^{x^2}
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{19} = e^{76} \\
y^3 = e^{x^2}
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{19} = e^{76} \\
y^3 = e^{x^2}
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{19} = e^{76} \\
y^3 = e^{x^2}
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{19} = e^{76} \\
y^3 = e^{x^2}
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{19} = e^{76} \\
y^3 = e^{x^2}
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{19} = e^{76} \\
y^3 = e^{x^2}
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{19} = e^{76} \\
y^3 = e^{x^2}
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{19} = e^{76} \\
y^3 = e^{x^2}
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x^{19} = e^{76} \\
y^3 = e^{x^2}
\end{cases}$$

La solution est:

$$S = \left\{ \left(e^4 ; e^3 \right) \right\}$$

e)
$$\begin{cases} \ln(xy) = 4 \\ (\ln x)(\ln y) = -12 \end{cases} \Leftrightarrow \begin{cases} xy = e^4 \\ (\ln x)(\ln y) = -12 \end{cases} \Leftrightarrow \begin{cases} y = \frac{e^4}{x} \\ (\ln x)\left(\ln \frac{e^4}{x}\right) = -12 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \frac{e^4}{x} \\ (\ln x)(\ln e^4 - \ln x) = -12 \end{cases} \Leftrightarrow \begin{cases} y = \frac{e^4}{x} \\ (\ln x)(4 - \ln x) = -12 \end{cases} \Leftrightarrow \begin{cases} y = \frac{e^4}{x} \\ (\ln x)^2 - 4(\ln x) - 12 = 0 \end{cases}$$

On pose : $X = \ln x$, l'équation devient :

$$X^2-4X-12=0 \iff (X-6)(X+2)=0$$

On obtient deux solutions : 6 et -2.

Or: $X = \ln x \iff x = e^X$. Ainsi:

$$x_1 = e^6$$
 et $x_2 = e^{-2}$

On en déduit :

$$y_1 = \frac{e^4}{x_1} = \frac{e^4}{e^6} = e^{-2}$$
 et $y_2 = \frac{e^4}{x_2} = \frac{e^4}{e^{-2}} = e^6$

Les solutions sont :

$$S = \{ (e^6; e^{-2}); (e^{-2}; e^6) \}$$

