

Rappels de première

Conversions d'angles (rappels de première)

Ex 1B.1: Compléter le tableau suivant :

r											
	mesure en degrés		50	18		135		45	153		
	mesure en radians	$\frac{8\pi}{15}$			$\frac{3\pi}{20}$		$\frac{\pi}{3}$			$\frac{7\pi}{6}$	

Longueur d'arc (rappels de première)

Ex 1B.2: Soit un cercle de rayon 4 cm; déterminer la longueur des arcs de mesure $a = 32^{\circ}$ et b = 1,2 rad (arrondir les résultats au centième) conseil : utiliser la formule : $l = R \times \alpha$

Mesures principales d'angles orientés (rappels de première)

Ex 1B.3: Trouver la mesure principale α_i (pour i = 1 ou 2 ou 3 ou 4) de chacun des angles x_i et sur le cercle trigonométrique, placer les points M_i associés aux réels α_i

$$x_1 = \frac{341\pi}{12}$$
; $x_2 = -379\pi$; $x_3 = \frac{325\pi}{4}$; $x_4 = -\frac{1023\pi}{6}$

Simplification d'écritures trigonométriques (rappels de première)

Ex 1B.4: 1) calculer
$$A = \cos\frac{\pi}{3} - \cos\frac{2\pi}{3} - \cos\frac{4\pi}{3} + \cos\frac{5\pi}{3}$$

2) simplifier $B = \sin\left(\frac{\pi}{2} - x\right) + \cos\left(5\pi - x\right) + \sin\left(\frac{3\pi}{2} + x\right) + \cos\left(\frac{3\pi}{2} - x\right)$

Etude de fonctions trigonométriques (périodicité, parité, variations) (rappels de première)

Ex 1B.5: Soit f la fonction définie sur \mathbb{R} par $f(x) = \sin \frac{x}{2}$

- 1) montrer que f est impaire
- 2) montrer que f est périodique de période 4π ; en déduire un intervalle restreint d'étude pour f
- 3) dresser le tableau de variation de f sur $[0; 2\pi]$
- 4) dans le repère $(0; \vec{1}; \vec{1})$, tracer C la courbe représentative de f sur l'intervalle $[0; 2\pi]$
- 5) dans le même repère, compléter C de façon à obtenir sa représentation graphique sur $[-2\pi; 6\pi]$ (on indiquera les transformations utilisées)

Ex 1B.6: Soit f la fonction définie sur \mathbb{R} par $f(x) = \cos 2x$

- 1) montrer que f est paire.
- 2) montrer que f est périodique de période π ; en déduire un intervalle restreint d'étude pour f.
- 3) dresser le tableau de variation de f sur $\left[0; \frac{\pi}{2}\right]$.
- 4) dans le repère (O; \vec{i} ; \vec{j}), tracer C la courbe représentative de f sur l'intervalle $\left[0; \frac{\pi}{2}\right]$.
- 5) dans le même repère, compléter C de façon à obtenir sa représentation graphique sur $\left[-\frac{\pi}{2}; \frac{3\pi}{2}\right]$.

CORRIGE – Notre Dame de La Merci – Montpellier

Ex 1B.1: Si α est la mesure en radians et a celle en degrés; on a : $a = \frac{\alpha \times 180}{\pi}$ et $\alpha = \frac{a \times \pi}{180}$

$$\frac{8\pi}{15} \text{ rad} = \frac{\frac{8\pi}{15} \times 180}{\pi} = \frac{8 \times 180}{15} = 96^{\circ}$$

$$50^{\circ} = \frac{50 \times \pi}{180} = \frac{5\pi}{18} \text{ rad}$$

$$\frac{3\pi}{20} \text{ rad} = \frac{\frac{3\pi}{20} \times 180}{\pi} = 27^{\circ}$$

$$18^{\circ} = \frac{18 \times \pi}{180} = \frac{\pi}{10} \text{ rad}$$

$$\frac{\pi}{3} \text{ rad} = \frac{\frac{\pi}{3} \times 180}{\pi} = 60^{\circ}$$

$$135^{\circ} = \frac{135 \times \pi}{180} = \frac{3\pi}{4} \text{ rad}$$

$$\frac{7\pi}{6} \text{ rad} = \frac{\frac{7\pi}{6} \times 180}{\pi} = 210^{\circ}$$

$$45^{\circ} = \frac{45 \times \pi}{180} = \frac{\pi}{4} \text{ rad}$$

mesure en degrés	96	50	18	27	135	60	45	153	210
mesure en radians	8π	5π	π	3π	3π	π	π	17π	7π
	<u>15</u>	18	10	20	4	3	4	20	6

 $153^{\circ} = \frac{153 \times \pi}{180} = \frac{17 \pi}{20}$ rad

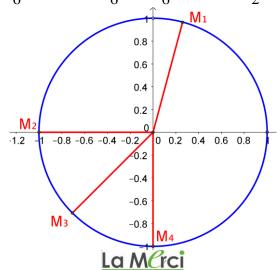
La Merci

Ex 1B.2: On a: $l = R \times \alpha$,

où l est la longueur de l'arc, R le rayon du cercle et α la mesure de l'angle <u>en radians</u>

$$a = 32^{\circ} = \frac{32 \times \pi}{180} = \frac{8 \pi}{45} \text{ rad donc}$$
 $l = 4 \times \frac{8 \pi}{45} = \frac{32 \pi}{45} \text{ cm} \approx 2,23 \text{ cm}$

$$b = 1.2 \text{ rad donc } l = 4 \times 1.2 = 4.8 \text{ cm}$$



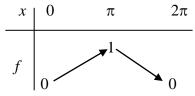
Ex 1B.4:
$$A = \cos \frac{\pi}{3} - \cos \frac{2\pi}{3} - \cos \frac{4\pi}{3} + \cos \frac{5\pi}{3}$$

 $A = \cos \frac{\pi}{3} - \cos \left(\pi - \frac{\pi}{3}\right) - \cos \left(\pi + \frac{\pi}{3}\right) + \cos \left(2\pi - \frac{\pi}{3}\right)$
 $A = \cos \frac{\pi}{3} - \left(-\cos \frac{\pi}{3}\right) - \left(-\cos \frac{\pi}{3}\right) + \cos \frac{\pi}{3}$
 $A = \cos \frac{\pi}{3} + \cos \frac{\pi}{3} + \cos \frac{\pi}{3} + \cos \frac{\pi}{3}$
 $A = \cos \frac{\pi}{3} + \cos \frac{\pi}{3} + \cos \frac{\pi}{3} + \cos \frac{\pi}{3}$
 $A = 4\cos \frac{\pi}{3}$
 $B = \sin \left(\frac{\pi}{2} - x\right) + \cos \left(5\pi - x\right) + \sin \left(\frac{3\pi}{2} + x\right) + \cos \left(\frac{3\pi}{2} - x\right)$
 $B = \cos x + \cos \left(4\pi + \pi - x\right) + \sin \left(2\pi - \frac{\pi}{2} + x\right) + \cos \left(2\pi - \frac{\pi}{2} - x\right)$
 $B = \cos x + \cos \left(\pi - x\right) + \sin \left(-\frac{\pi}{2} + x\right) + \cos \left(\frac{\pi}{2} - x\right)$
 $B = \cos x + \left(-\cos x\right) + \sin \left(-\left(\frac{\pi}{2} - x\right)\right) + \cos \left(\frac{\pi}{2} + x\right)$
 $B = \cos x - \cos x + \left(-\sin \left(\frac{\pi}{2} - x\right)\right) - \sin x$
 $B = -\cos x - \sin x$

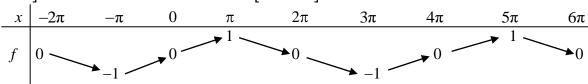
La Merci

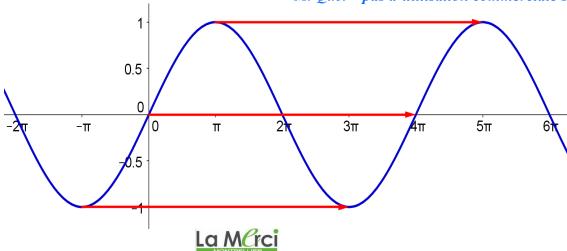
Ex 1B.5: $f(x) = \sin \frac{x}{2}$

- 1) $D_f = \mathbb{R}$ et $f(-x) = \sin \frac{-x}{2} = -\sin \frac{x}{2} = -f(x)$ donc f est impaire; on peut donc l'étudier sur \mathbb{R}^+
- 2) $f(x+4\pi) = \sin \frac{x+4\pi}{2} = \sin \left(\frac{x}{2}+2\pi\right) = \sin \frac{x}{2} = f(x)$ donc f est périodique de période 4π ; on peut donc l'étudier sur un intervalle d'amplitude 4π , par exemple : $\left[-2\pi; 2\pi\right]$ Ainsi grâce à la parité et à la périodicité de f, on en déduit l'intervalle d'étude : $\mathbf{I} = \begin{bmatrix} 0; 2\pi \end{bmatrix}$
- 3) En s'inspirant du tableau de la fonction sinus, on obtient :



4) et 5) f est impaire donc C est symétrique par rapport à l'origine O du repère ; on en déduit C sur $[-2\pi;0]$ et f est périodique de période 4π donc par translation de vecteur $4\pi\vec{i}$, on en déduit C sur $[2\pi;6\pi]$. Voici la représentation de f sur $[-2\pi;6\pi]$:





Ex 1B.6: $f(x) = \cos 2x$

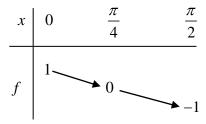
1) $D_f = \mathbb{R}$ et $f(-x) = \cos(-2x) = \cos 2x = f(x)$ donc **f est paire**; on peut donc l'étudier sur \mathbb{R}^+

2)
$$f(x+\pi) = \cos[2(x+\pi)] = \cos[2x+2\pi] = \cos 2x = f(x)$$

donc f est périodique de période π ; on peut donc l'étudier sur un intervalle d'amplitude π , soit par exemple : $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$

Grâce à la parité et à la périodicité de f, on en déduit l'intervalle d'étude : $\mathbf{I} = \begin{bmatrix} 0; \frac{\pi}{2} \end{bmatrix}$

3) en s'inspirant du tableau de la fonction cosinus, on obtient :

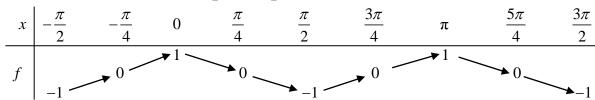


4) et 5) f est paire donc C est symétrique par rapport à l'axe des ordonnées

$$\rightarrow$$
on en déduit C sur $\left[-\frac{\pi}{2};0\right]$

f est périodique de période π donc par translation de vecteur $\pi \vec{1}$, on en déduit C sur $\left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$

d'où la représentation de f sur $\left[-\frac{\pi}{2}; \frac{3\pi}{2}\right]$:



M. Quet – pas d'utilisation commerciale svp

